Search results
Results from the WOW.Com Content Network
The ocean conducts sound very efficiently, particularly sound at low frequencies, i.e., less than a few hundred Hz. Temperature is the dominant factor in determining the speed of sound in the ocean. In areas of higher temperatures (e.g. near the ocean surface), there is higher sound speed.
The decreased light intensity, replicates the typical lighting experienced at night time that stimulate the planktonic organisms to migrate. During an eclipse, some copepod species distribution is concentrated near the surface, for example Calanus finmarchicus displays a classic diurnal migration pattern but on a much shorter time scale during ...
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).
Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in units of sverdrup (Sv), where 1 Sv is equivalent to a volume flow rate of 1,000,000 m 3 (35,000,000 cu ft) per second.
Depending on how it is defined, the aphotic zone of the ocean begins between depths of about 200 m (660 ft) to 800 m (2,600 ft) and extends to the ocean floor. [ 1 ] [ 2 ] [ 3 ] The majority of the ocean is aphotic, with the average depth of the sea being 4,267 m (13,999 ft) deep; the deepest part of the sea, the Challenger Deep in the Mariana ...
Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. (The rate at which new oceanic lithosphere is added to each tectonic plate on either side of a mid-ocean ridge is the spreading half-rate and is equal to half of the spreading rate). Spreading rates determine if the ridge is fast, intermediate, or slow.
Milky sea effect off the coast of Somalia in the Indian Ocean. Milky seas (Somali: Kaluunka iftiima; English: Milky seas), sometimes confused with mareel, are a luminous phenomenon in the ocean in which large areas of seawater (up to 100,000 km 2 or 39,000 sq mi [1]) appear to glow diffusely and continuously (in varying shades of blue).
Wind farms are often situated near a coast to take advantage of the normal daily fluctuations of wind speed resulting from sea or land breezes. While many onshore wind farms and offshore wind farms do not rely on these winds, a nearshore wind farm is a type of offshore wind farm located on shallow coastal waters to take advantage of both sea ...