enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms, do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic.

  3. David Hilbert - Wikipedia

    en.wikipedia.org/wiki/David_Hilbert

    Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly ...

  4. Hilbert geometry - Wikipedia

    en.wikipedia.org/wiki/Hilbert_geometry

    The term Hilbert geometry may refer to several things named after David Hilbert: . Hilbert's axioms, a modern axiomatization of Euclidean geometry; Hilbert space, a space in many ways resembling a Euclidean space, but in important instances infinite-dimensional

  5. Geometry and the Imagination - Wikipedia

    en.wikipedia.org/wiki/Geometry_and_the_Imagination

    Geometry and the Imagination is the English translation of the 1932 book Anschauliche Geometrie by David Hilbert and Stefan Cohn-Vossen. [1]The book was based on a series of lectures Hilbert made in the winter of 1920–21.

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    By developing a postulate set for Euclidean geometry that does not depart too greatly in spirit from Euclid's own, and by employing a minimum of symbolism, Hilbert succeeded in convincing mathematicians to a far greater extent than had Pasch and Peano, of the purely hypothetico-deductive nature of geometry. But the influence of Hilbert's work ...

  7. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  8. Hilbert's fourth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourth_problem

    In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...

  9. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.