enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    An interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices. Consider these two problems: Graph Isomorphism: Is graph G 1 isomorphic to graph G 2?

  4. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  5. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  6. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known, but it is believed that the problem is at least not NP-complete. [20]

  7. Eight queens puzzle - Wikipedia

    en.wikipedia.org/wiki/Eight_queens_puzzle

    If the remainder is 3, move 2 to the end of even list and 1,3 to the end of odd list (4, 6, 8, 2 – 5, 7, 9, 1, 3). Append odd list to the even list and place queens in the rows given by these numbers, from left to right (a2, b4, c6, d8, e3, f1, g7, h5). For n = 8 this results in fundamental solution 1 above. A few more examples follow.

  8. Subgraph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Subgraph_isomorphism_problem

    Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...

  9. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    For example, all known greedy coloring algorithms for the graph coloring problem and all other NP-complete problems do not consistently find optimum solutions. Nevertheless, they are useful because they are quick to think up and often give good approximations to the optimum.