Search results
Results from the WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
To avoid installing the large SciPy package just to get an array object, this new package was separated and called NumPy. Support for Python 3 was added in 2011 with NumPy version 1.5.0. [15] In 2011, PyPy started development on an implementation of the NumPy API for PyPy. [16] As of 2023, it is not yet fully compatible with NumPy. [17]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
Core Python Programming is a textbook on the Python programming language, written by Wesley J. Chun. The first edition of the book was released on December 14, 2000. [1] The second edition was released several years later on September 18, 2006. [2] Core Python Programming is mainly targeted at higher education students and IT professionals. [3]
On 21 March 2017, the PyPy project released version 5.7 of both PyPy and PyPy3, with the latter introducing beta-quality support for Python 3.5. [25] On 26 April 2018, version 6.0 was released, with support for Python 2.7 and 3.5 (still beta-quality on Windows). [26] On 11 February 2019, version 7.0 was released, with support for Python 2.7 and ...
Numpy is one of the most popular Python data libraries, and TensorFlow offers integration and compatibility with its data structures. [66] Numpy NDarrays, the library's native datatype, are automatically converted to TensorFlow Tensors in TF operations; the same is also true vice versa. [ 66 ]
print length([2+1, 3*2, 1/0, 5-4]) fails under strict evaluation because of the division by zero in the third element of the list. Under lazy evaluation, the length function returns the value 4 (i.e., the number of items in the list), since evaluating it does not attempt to evaluate the terms making up the list.