Search results
Results from the WOW.Com Content Network
When looking at groups of features across samples, FPKM is converted to transcripts per million (TPM) by dividing each FPKM by the sum of FPKMs within a sample. [ 91 ] [ 92 ] [ 93 ] Total sample RNA output: Because the same amount of RNA is extracted from each sample, samples with more total RNA will have less RNA per gene.
Sequencing technologies vary in the length of reads produced. Reads of length 20-40 base pairs (bp) are referred to as ultra-short. [2] Typical sequencers produce read lengths in the range of 100-500 bp. [3] However, Pacific Biosciences platforms produce read lengths of approximately 1500 bp. [4] Read length is a factor which can affect the results of biological studies. [5]
It is already adapted to align long reads (third-generation sequencing technologies) and can reach speeds of 45 million paired reads per hour per processor. [49] Subjunc [44] is a specialized version of Subread. It uses all mappable regions in an RNA-seq read to discover exons and exon-exon junctions.
A human transcriptome could be accurately captured using RNA-Seq with 30 million 100 bp sequences per sample. [85] [86] This example would require approximately 1.8 gigabytes of disk space per sample when stored in a compressed fastq format. Processed count data for each gene would be much smaller, equivalent to processed microarray intensities.
There are two common methods in which to construct a DNA molecular-weight size marker. [3] One such method employs the technique of partial ligation. [3] DNA ligation is the process by which linear DNA pieces are connected to each other via covalent bonds; more specifically, these bonds are phosphodiester bonds. [4]
ADT data analysis [2] [7] [10] [11] (based on the developer's guidelines): CITE-seq-Count is a Python package from CITE-Seq developers that can be used to obtain raw counts. Seurat package from Satija lab further allows combining of the protein and RNA counts and performing clustering on both measurements, as well as doing differential ...
In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. [1] This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one go, but rather reads small pieces of between 20 and 30,000 bases, depending on the technology used. [1]
On March 8, 2018, the 2.1 chemistry was released. It increased average read length to 20,000 bases and half of all reads above 30,000 bases in length. Yield per SMRT Cell increased to 10 or 20 billion bases, for either large-insert libraries or shorter-insert (e.g. amplicon) libraries respectively. [29] Pipette tip in an 8M SMRT Cell