Search results
Results from the WOW.Com Content Network
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
As a consequence, log b (x) diverges to infinity (gets bigger than any given number) if x grows to infinity, provided that b is greater than one. In that case, log b (x) is an increasing function. For b < 1, log b (x) tends to minus infinity instead. When x approaches zero, log b x goes to minus infinity for b > 1 (plus infinity for b < 1 ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The history of logarithms is the story of a correspondence (in modern terms, a group isomorphism) between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and was widely used to simplify calculation until the advent of the digital computer.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".
Similarly, let b −k denote the product of b −1 with itself k times. For k = 0, the kth power is the identity: b 0 = 1. Let a also be an element of G. An integer k that solves the equation b k = a is termed a discrete logarithm (or simply logarithm, in this context) of a to the base b. One writes k = log b a.
The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis. In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: