Search results
Results from the WOW.Com Content Network
A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has height of 2. Sibling - Nodes that share the same parent node. A node p is an ancestor of a node q if it exists on the path from q to the root. The node q is then termed a descendant of p. The size of a node is the number of descendants it ...
The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such ...
For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.
A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.
It follows that for any tree with n nodes and height h: + And that implies: ⌈ (+) ⌉ ⌊ ⌋. In other words, the minimum height of a binary tree with n nodes is log 2 (n), rounded down; that is, ⌊ ⌋. [1] However, the simplest algorithms for BST item insertion may yield a tree with height n in rather common situations.
The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (a tree with no vertices, if such are allowed) has depth and height −1. A k-ary tree (for nonnegative integers k) is a rooted tree in which each vertex has at most k children.
A tree-pyramid (T-pyramid) is a "complete" tree; every node of the T-pyramid has four child nodes except leaf nodes; all leaves are on the same level, the level that corresponds to individual pixels in the image.
Let h ≥ –1 be the height of the classic B-tree (see Tree (data structure) § Terminology for the tree height definition). Let n ≥ 0 be the number of entries in the tree. Let m be the maximum number of children a node can have. Each node can have at most m−1 keys.