Search results
Results from the WOW.Com Content Network
Alternatively, one can create a photonic bandgap photonic crystal fiber, in which the light is confined by a photonic bandgap created by the microstructured cladding—such a bandgap, properly designed, can confine light in a lower-index core and even a hollow (air) core. Bandgap fibers with hollow cores can potentially circumvent limits ...
Photonic crystal fibers are a variant of the microstructured fibers reported by Kaiser et al. They are an attempt to incorporate the bandgap ideas of Yeh et al. in a simple way by stacking periodically a regular array of channels and drawing into fiber form. The first such fibers did not propagate by such a bandgap but rather by an effective ...
The bandgap of photonic crystals can be understood as the destructive interference of multiple reflections of light propagating in the crystal at each interface between layers of high- and low- refractive index regions, akin to the bandgaps of electrons in solids. There are two strategies for opening up the complete photonic band gap.
The subwavelength periodicity [2] distinguishes photonic metamaterials from photonic band gap or photonic crystal structures. The cells are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, [3] [4] are on the order of nanometers. [3] [4] [5]
The uniplanar compact photonic-bandgap (UC-PBG) is proposed, simulated, and then constructed in the lab to overcome elucidated limitations of planar circuit technology. Like photonic bandgap structures it is etched into the ground plane of the microstrip line. The geometry is square metal pads.
The majority of silicon photonic communications have so far been limited to telecom [31] and datacom applications, [32] [33] where the reach is of several kilometers or several meters respectively. Silicon photonics, however, is expected to play a significant role in computercom as well, where optical links have a reach in the centimeter to ...
The technology is based on the revolutionary photonic bandgap fiber invented at MIT, published in Nature and Science and subsequently licensed exclusively to the company. [3] The first flexible fiber-optic surgical scalpel capable of delivering CO 2 laser light has been developed using this technology. [1] [4]
Photonic-crystal fiber is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses diffraction effects instead of or in addition to total internal reflection, to confine light to the fiber's core. The properties of the fiber can be tailored to a wide variety ...