enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Clustering can be used to divide a digital image into distinct regions for border detection or object recognition. [59] Evolutionary algorithms Clustering may be used to identify different niches within the population of an evolutionary algorithm so that reproductive opportunity can be distributed more evenly amongst the evolving species or ...

  3. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid. However, the pure k -means algorithm is not very flexible, and as such is of limited use (except for when vector quantization as above is actually the desired use case).

  5. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  6. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN is one of the most commonly used and cited clustering algorithms. [2] In 2014, the algorithm was awarded the Test of Time Award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, ACM SIGKDD. [3]

  8. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Some of the most common algorithms used in unsupervised learning include: (1) Clustering, (2) Anomaly detection, (3) Approaches for learning latent variable models. Each approach uses several methods as follows: Clustering methods include: hierarchical clustering, [13] k-means, [14] mixture models, model-based clustering, DBSCAN, and OPTICS ...

  9. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Much of the model-based clustering software is in the form of a publicly and freely available R package. Many of these are listed in the CRAN Task View on Cluster Analysis and Finite Mixture Models. [34] The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37]