Search results
Results from the WOW.Com Content Network
Oxidative stress mechanisms in tissue injury. Free radical toxicity induced by xenobiotics and the subsequent detoxification by cellular enzymes (termination).. Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. [1]
ROS are not uniformly defined. All sources include superoxide, singlet oxygen, and hydroxyl radical. Hydrogen peroxide is not nearly as reactive as these species, but is readily activated and is thus included. [3] Peroxynitrite and nitric oxide are reactive oxygen-containing species as well.
The relative importance of the antioxidant and pro-oxidant activities of antioxidant vitamins is an area of current research, but vitamin C, for example, appears to have a mostly antioxidant action in the body. [7] [9] However, less data is available for other dietary antioxidants, such as polyphenol antioxidants, [10] zinc, [11] and vitamin E ...
Oxidation response is stimulated by a disturbance in the balance between the production of reactive oxygen species and antioxidant responses, known as oxidative stress. Active species of oxygen naturally occur in aerobic cells and have both intracellular and extracellular sources.
Two sources inspired Harman: 1) the rate of living theory, which holds that lifespan is an inverse function of metabolic rate which in turn is proportional to oxygen consumption, and 2) Rebeca Gerschman's observation that hyperbaric oxygen toxicity and radiation toxicity could be explained by the same underlying phenomenon: oxygen free radicals.
The most widely observed cofactor involved in dioxygenation reactions is iron, but the catalytic scheme employed by these iron-containing enzymes is highly diverse. Iron-containing dioxygenases can be subdivided into three classes on the basis of how iron is incorporated into the active site: those employing a mononuclear iron center, those containing a Rieske [2Fe-2S] cluster, and those ...
The body's range of defense against all of these active oxidizing agents is hardly surprising, then, given their "deliberate" employment as antimicrobial agents in the immune response. [14] Reactive oxygen species also play an important role in the hypersensitive response of plants against pathogen attack.
From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...