Search results
Results from the WOW.Com Content Network
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates.They possess elliptic paraboloids as one-coordinate surfaces.
Paraboloid of revolution. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The scale factors for the parabolic coordinates (,) are equal = = + Hence, the infinitesimal element of area is = (+) and the Laplacian equals = + (+) Other differential operators such as and can be expressed in the coordinates (,) by substituting the scale factors into the general formulae found in orthogonal coordinates.
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I ...
Parabolic coordinate system showing curves of constant σ and τ the horizontal and vertical axes are the x and y coordinates respectively. These coordinates are projected along the z-axis, and so this diagram will hold for any value of the z coordinate.
Hyperbolic paraboloid A model of an elliptic hyperboloid of one sheet A monkey saddle. A saddle surface is a smooth surface containing one or more saddle points.. Classical examples of two-dimensional saddle surfaces in the Euclidean space are second order surfaces, the hyperbolic paraboloid = (which is often referred to as "the saddle surface" or "the standard saddle surface") and the ...
Parabolic antennas are based on the geometrical property of the paraboloid that the paths FP 1 Q 1, FP 2 Q 2, FP 3 Q 3 are all the same length. Thus, a spherical wavefront emitted by a feed antenna at the dish's focus F will be reflected into an outgoing plane wave L travelling parallel to the dish's axis VF.