Search results
Results from the WOW.Com Content Network
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary function whose two domains and the codomain are the same set.
An n-ary partial operation ω from X n to X is a partial function ω: X n → X. An n-ary partial operation can also be viewed as an (n + 1)-ary relation that is unique on its output domain. The above describes what is usually called a finitary operation, referring to the finite number of operands (the value n).
In mathematics, a partial function f from a set X to a set Y is a function from a subset S of X (possibly the whole X itself) to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition or natural domain of f. If S equals X, that is, if f is defined on every element in X, then f is said to be a total ...
[8] [9] This definition is equivalent to a partial order on a setoid, where equality is taken to be a defined equivalence relation rather than set equality. [10] Wallis defines a more general notion of a partial order relation as any homogeneous relation that is transitive and antisymmetric. This includes both reflexive and irreflexive partial ...
The resulting structure on is called a partial lattice. In addition to this extrinsic definition as a subset of some other algebraic structure (a lattice), a partial lattice can also be intrinsically defined as a set with two partial binary operations satisfying certain axioms. [1]
Transitivity is defined by the partial binary operation on that maps (,) and (,) to (,). A relation is transitive if it is closed under this operation, and the transitive closure of a relation is its closure under this operation.
One can also consider partial binary functions, which may be defined only for certain values of the inputs. For example, the division example above may also be interpreted as a partial binary function from Z and N to Q, where N is the set of all natural numbers, including zero. But this function is undefined when the second input is zero.
Morphisms are equipped with a partial binary operation, called composition. The composition of two morphisms f and g is defined precisely when the target of f is the source of g, and is denoted g ∘ f (or sometimes simply gf). The source of g ∘ f is the source of f, and the target of g ∘ f is the target of g. The composition satisfies two ...