Search results
Results from the WOW.Com Content Network
A lithosphere (from Ancient Greek ... studies in the early 21st century posit that large pieces of the lithosphere have been subducted into the mantle as deep as ...
Mechanically, it can be divided into lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. [6] The geologic component layers of Earth are at increasing depths below the surface. [6]: 146
Lithosphere underlying ocean crust has a thickness of around 100 km (62 mi), whereas lithosphere underlying continental crust generally has a thickness of 150–200 km (93–124 mi). [5] The lithosphere and overlying crust make up tectonic plates, which move over the asthenosphere. Below the asthenosphere, the mantle is again relatively rigid.
The lithosphere–asthenosphere boundary ... The LAB beneath these regions (composed of shields and platforms) is estimated to be between 200 and 250 km deep. [14]
Plates in the crust of Earth. Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume.It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper part of the mantle. [1]
Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...
The lithosphere consists of the outermost light crust plus the uppermost rigid portion of the mantle. Oceanic lithosphere ranges in thickness from just a few km for young lithosphere created at mid-ocean ridges to around 100 km (62 mi) for the oldest oceanic lithosphere. [7] Continental lithosphere is up to 200 km (120 mi) thick. [8]
The greater density of old lithosphere relative to the underlying asthenosphere allows it to sink into the deep mantle at subduction zones, providing most of the driving force for plate movement. The weakness of the asthenosphere allows the tectonic plates to move easily towards a subduction zone.