enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  3. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [4]

  4. Large margin nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor

    The k-nearest neighbor rule assumes a training data set of labeled instances (i.e. the classes are known). It classifies a new data instance with the class obtained from the majority vote of the k closest (labeled) training instances. Closeness is measured with a pre-defined metric. Large margin nearest neighbors is an algorithm that learns ...

  5. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Fig. 2 shows the 1NN classification map: each pixel is classified by 1NN using all the data. Fig. 3 shows the 5NN classification map. White areas correspond to the unclassified regions, where 5NN voting is tied (for example, if there are two green, two red and one blue points among 5 nearest neighbors). Fig. 4 shows the reduced data set.

  6. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    These are the steps of the algorithm: Initialize all vertices as unvisited. Select an arbitrary vertex, set it as the current vertex u.Mark u as visited.; Find out the shortest edge connecting the current vertex u and an unvisited vertex v.

  7. Hierarchical navigable small world - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_navigable...

    The HNSW graph offers an approximate k-nearest neighbor search which scales logarithmically even in high-dimensional data. It is an extension of the earlier work on navigable small world graphs presented at the Similarity Search and Applications (SISAP) conference in 2012 with an additional hierarchical navigation to find entry points to the ...

  8. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]