Search results
Results from the WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In some cases the sample designer has access to an "auxiliary variable" or "size measure", believed to be correlated to the variable of interest, for each element in the population. These data can be used to improve accuracy in sample design. One option is to use the auxiliary variable as a basis for stratification, as discussed above.
If the ratio of the two sample rates is (or can be approximated by) [A] [4] a fixed rational number L/M: generate an intermediate signal by inserting L − 1 zeros between each of the original samples. Low-pass filter this signal at half of the lower of the two rates. Select every M-th sample from the filtered output, to obtain the result. [5]
Proportionate allocation uses a sampling fraction in each of the strata that are proportional to that of the total population. For instance, if the population consists of n total individuals, m of which are male and f female (and where m + f = n), then the relative size of the two samples (x 1 = m/n males, x 2 = f/n females) should reflect this proportion.
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a row vector whose j th element (j = 1, ..., K) is one of the random variables. [1] The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample ...
Eta-squared describes the ratio of variance explained in the dependent variable by a predictor while controlling for other predictors, making it analogous to the r 2. Eta-squared is a biased estimator of the variance explained by the model in the population (it estimates only the effect size in the sample).
The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low.