Search results
Results from the WOW.Com Content Network
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...
Since the area of a triangle cannot be negative the spherical excess is always positive. It is not necessarily small, because the sum of the angles may attain 5 π (3 π for proper angles). For example, an octant of a sphere is a spherical triangle with three right angles, so that the excess is π /2.
The angle sum of a triangle is greater than 180° and less than 540°. The area of a triangle is proportional to the excess of its angle sum over 180°. Two triangles with the same angle sum are equal in area. There is an upper bound for the area of triangles.
The angle sum of a triangle is less than 180°. The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries:
The triangle of the largest area of all those inscribed in a given circle is equilateral, and the triangle of the smallest area of all those circumscribed around a given circle is also equilateral. [15] It is the only regular polygon aside from the square that can be inscribed inside any other regular polygon.
Triangle area property: The area of a triangle can be as large as we please. Three points property: Three points either lie on a line or lie on a circle. Pythagoras' theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides. [1]
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.