Ad
related to: prove area of triangle
Search results
Results from the WOW.Com Content Network
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [7] or as a special case of De Gua's theorem (for the particular case of acute triangles), [8] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
A similar proof uses four copies of a right triangle with sides a, b and c, arranged inside a square with side c as in the top half of the diagram. [6] The triangles are similar with area , while the small square has side b − a and area (b − a) 2. The area of the large square is therefore
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.
This proof depends on the readily-proved proposition that the area of a triangle is half its base times its height—that is, half the product of one side with the altitude from that side. [ 2 ] Let ABC be an equilateral triangle whose height is h and whose side is a .
Heron's formula for the area of a triangle is the special case obtained by taking d = 0. The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem .
Routh's theorem. In geometry, Routh's theorem determines the ratio of areas between a given triangle and a triangle formed by the pairwise intersections of three cevians.The theorem states that if in triangle points , , and lie on segments , , and , then writing =, =, and =, the signed area of the triangle formed by the cevians , , and is
Garfield's proof of the Pythagorean theorem is an original proof the Pythagorean theorem discovered by James A. Garfield (November 19, 1831 – September 19, 1881), the 20th president of the United States. The proof appeared in print in the New-England Journal of Education (Vol. 3, No.14, April 1, 1876).
Ad
related to: prove area of triangle