enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrochemical potential - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_potential

    In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...

  3. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    Henry's law for the solute can be derived ... of substance—is more specifically called total chemical potential. ... an electron chemical potential that might vary ...

  4. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    When a chemical reaction is driven by an electrical potential difference, as in electrolysis, or if a potential difference results from a chemical reaction as in an electric battery or fuel cell, it is called an electrochemical reaction. Unlike in other chemical reactions, in electrochemical reactions electrons are not transferred directly ...

  5. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    In fact, the quantity called voltage as measured in an electronic circuit has a simple relationship to the chemical potential for electrons (Fermi level). When the leads of a voltmeter are attached to two points in a circuit, the displayed voltage is a measure of the total work transferred when a unit charge is allowed to move from one point to ...

  6. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    Hence, the internal chemical potential, μ-E 0, is approximately equal to the Fermi energy at temperatures that are much lower than the characteristic Fermi temperature T F. This characteristic temperature is on the order of 10 5 K for a metal, hence at room temperature (300 K), the Fermi energy and internal chemical potential are essentially ...

  7. Electric-field screening - Wikipedia

    en.wikipedia.org/wiki/Electric-field_screening

    The chemical potential μ is, by definition, the energy of adding an extra electron to the fluid. This energy may be decomposed into a kinetic energy T part and the potential energy − eφ part. Since the chemical potential is kept constant, Δ μ = Δ T − e Δ ϕ = 0. {\displaystyle \Delta \mu =\Delta T-e\Delta \phi =0.}

  8. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...

  9. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    It uses a dimensionless potential = and the lengths are measured in units of the Debye electron radius in the region of zero potential = (where denotes the number density of negative ions in the zero potential region). For the spherical case, L=2, the axial case, L=1, and the planar case, L=0.