Search results
Results from the WOW.Com Content Network
If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique ...
The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers. The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ 0, | x | → 0. The way of passing to the limit is often not stated explicitly, if it is clear from the context.
In an affine or Euclidean space of higher dimension, the points at infinity are the points which are added to the space to get the projective completion. [citation needed] The set of the points at infinity is called, depending on the dimension of the space, the line at infinity, the plane at infinity or the hyperplane at infinity, in all cases a projective space of one less dimension.
A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
The field of asymptotics is normally first encountered in school geometry with the introduction of the asymptote, a line to which a curve tends at infinity.The word Ασύμπτωτος (asymptotos) in Greek means non-coincident and puts strong emphasis on the point that approximation does not turn into coincidence.
A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the sequential limit. Let f : X → Y be a mapping from a topological space X into a Hausdorff space Y, p ∈ X a limit point of X and L ∈ Y.
More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0 , 1 and ∞ .