enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface of constant width - Wikipedia

    en.wikipedia.org/wiki/Surface_of_constant_width

    A sphere, a surface of constant radius and thus diameter, is a surface of constant width. Contrary to common belief the Reuleaux tetrahedron is not a surface of constant width. However, there are two different ways of smoothing subsets of the edges of the Reuleaux tetrahedron to form Meissner tetrahedra, surfaces of constant

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The sphere has constant width and constant girth. The width of a surface is the distance between pairs of parallel tangent planes. Numerous other closed convex surfaces have constant width, for example the Meissner body. The girth of a surface is the circumference of the boundary of its orthogonal projection on to a plane. Each of these ...

  4. Barbier's theorem - Wikipedia

    en.wikipedia.org/wiki/Barbier's_theorem

    In particular, the unit sphere has surface area , while the surface of revolution of a Reuleaux triangle with the same constant width has surface area . [ 5 ] Instead, Barbier's theorem generalizes to bodies of constant brightness , three-dimensional convex sets for which every two-dimensional projection has the same area.

  5. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. [1]

  6. Girth (geometry) - Wikipedia

    en.wikipedia.org/wiki/Girth_(geometry)

    All curves of constant width have the same perimeter, the same value πw as the circumference of a circle with that width (this is Barbier's theorem). Therefore, every surface of constant width is also a surface of constant girth: its girth in all directions is the same number πw. Hermann Minkowski proved, conversely, that every convex surface ...

  7. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    The first mathematician to discover the existence of curves of constant width, and to observe that the Reuleaux triangle has constant width, may have been Leonhard Euler. [5] In a paper that he presented in 1771 and published in 1781 entitled De curvis triangularibus , Euler studied curvilinear triangles as well as the curves of constant width ...

  8. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  9. Crofton formula - Wikipedia

    en.wikipedia.org/wiki/Crofton_formula

    In mathematics, the Crofton formula, named after Morgan Crofton (1826–1915), (also Cauchy-Crofton formula) is a classic result of integral geometry relating the length of a curve to the expected number of times a "random" line intersects it.