Search results
Results from the WOW.Com Content Network
[1] [2] They were later named by Alan Schoen in his seminal report that described the gyroid and other triply periodic minimal surfaces. [ 3 ] The surfaces were generated using symmetry arguments: given a solution to Plateau's problem for a polygon, reflections of the surface across the boundary lines also produce valid minimal surfaces that ...
Stephen Kleene notes that any of the six inequality restrictions on the range of the variable y is permitted, i.e. y < z, y ≤ z, w < y < z, w < y ≤ z, w ≤ y < z and w ≤ y ≤ z. "When the indicated range contains no y such that R( y ) [is "true"], the value of the "μ y " expression is the cardinal number of the range" (p. 226); this is ...
A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of , or as a function on the unit circle.. Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; [4] this is a special case of the Stone–Weierstrass theorem.
For the above isosceles triangle with unit sides and angle , the area 1 / 2 × base × height is calculated in two orientations. When upright, the area is sin θ cos θ {\displaystyle \sin \theta \cos \theta } .
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g.More precisely, given an open set in the complex plane and a function :, the antiderivative of is a function : that satisfies =.
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.