Search results
Results from the WOW.Com Content Network
In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases into rectangles, and the folds must again lie only along these creases. Lucas (1891) credits the invention of the stamp folding problem to Émile ...
The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).
Modular origami or unit origami is a multi-stage paper folding technique in which several, or sometimes many, sheets of paper are first folded into individual modules or units and then assembled into an integrated flat shape or three-dimensional structure, usually by inserting flaps into pockets created by the folding process. [3]
Geometric Origami is a book on the mathematics of paper folding, focusing on the ability to simulate and extend classical straightedge and compass constructions using origami. It was written by Austrian mathematician Robert Geretschläger [ de ] and published by Arbelos Publishing (Shipley, UK) in 2008.
Maekawa's theorem is a theorem in the mathematics of paper folding named after Jun Maekawa. It relates to flat-foldable origami crease patterns and states that at every vertex, the numbers of valley and mountain folds always differ by two in either direction. [1] The same result was also discovered by Jacques Justin [2] and, even earlier, by S ...
The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.
The Miura fold is a form of rigid origami, meaning that the fold can be carried out by a continuous motion in which, at each step, each parallelogram is completely flat. This property allows it to be used to fold surfaces made of rigid materials, making it distinct from the Kresling fold and Yoshimura fold which cannot be rigidly folded and ...