Search results
Results from the WOW.Com Content Network
Role of initiators for initiation of DNA replication Formation of pre-replication complex. For a cell to divide, it must first replicate its DNA. [26] DNA replication is an all-or-none process; once replication begins, it proceeds to completion. Once replication is complete, it does not occur again in the same cell cycle.
DnaA protein plays a crucial role in the initiation of chromosomal DNA replication. [3] Bound to ATP, and with the assistance of bacterial histone-like proteins [HU] DnaA then unwinds an AT-rich region near the left boundary of oriC, which carries three 13-mer motifs, [4] and opens up the double-stranded DNA for entrance of other replication ...
An ICL can block replicative fork progression due to failure of DNA strand separation. In vertebrate cells, replication of an ICL-containing chromatin template triggers recruitment of more than 90 DNA repair and genome maintenance factors. [13] These factors include proteins that perform sequential incisions and homologous recombination.
Due to the tight association of histone proteins to DNA, eukaryotic cells have proteins that are designed to remodel histones ahead of the replication fork, in order to allow smooth progression of the replisome. [137] There are also proteins involved in reassembling histones behind the replication fork to reestablish the nucleosome conformation ...
Molecular cloning takes advantage of the fact that the chemical structure of DNA is fundamentally the same in all living organisms. Therefore, if any segment of DNA from any organism is inserted into a DNA segment containing the molecular sequences required for DNA replication, and the resulting recombinant DNA is introduced into the organism from which the replication sequences were obtained ...
The initiator is the protein that recognizes the replicator and activates replication initiation. [ 1 ] Sometimes in bacteriology , the term "replicon" is only used to refer to chromosomes containing a single origin of replication and therefore excludes the genomes of archaea and eukaryotes which can have several origins.
The large genome sizes of eukaryotic cells, which range from 12 Mbp in S. cerevisiae to more than 100 Gbp in some plants, necessitates that DNA replication starts at several hundred (in budding yeast) to tens of thousands (in humans) origins to complete DNA replication of all chromosomes during each cell cycle.
Some eukaryotic cells (plant cells and fungal cells) also have a cell wall. Inside the cell is the cytoplasmic region that contains the genome (DNA), ribosomes and various sorts of inclusions. [2] The genetic material is freely found in the cytoplasm. Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular.