Search results
Results from the WOW.Com Content Network
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
Mean field game theory is the study of strategic decision making in very large populations of small interacting agents. This class of problems was considered in the economics literature by Boyan Jovanovic and Robert W. Rosenthal, in the engineering literature by Peter E. Caines, and by mathematicians Pierre-Louis Lions and Jean-Michel Lasry.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
Of the remaining strategies (see IESDS Figure 4), Y is strictly dominated by X for Player 2. Therefore, Player 2 will never play Y. Player 1 knows this. Only one rationalizable strategy is left {A,X} which results in a payoff of (10,4). This is the single Nash Equilibrium for this game.
Determined game (or Strictly determined game) In game theory, a strictly determined game is a two-player zero-sum game that has at least one Nash equilibrium with both players using pure strategies. [2] [3] Dictator A player is a strong dictator if he can guarantee any outcome regardless of the other players.
The game is a potential game (Monderer and Shapley 1996-a,1996-b) The game has generic payoffs and is 2 × N (Berger 2005) Fictitious play does not always converge, however. Shapley (1964) proved that in the game pictured here (a nonzero-sum version of Rock, Paper, Scissors), if the players start by choosing (a, B), the play will cycle ...
In game theory and related fields, a game form, game frame, ruleset, or outcome function is the set of rules that govern a game and determine its outcome based on each player's choices. A game form differs from a game in that it does not stipulate the utilities or payoffs for each agent.