Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 26 January 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
In contrast to a gamete, which has only one set of chromosomes, a diploid somatic cell has two sets of homologous chromosomes, one of which is a copy of the chromosome set from the sperm and one a copy of the chromosome set from the egg cell.
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes ...
The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. [2]
Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes . [1]
After the chromosomes line up in the middle of the cell, the spindle fibers will pull them apart. The chromosomes are split apart while the sister chromatids move to opposite sides of the cell. [29] As the sister chromatids are being pulled apart, the cell and plasma are elongated by non-kinetochore microtubules. [30]
An individual gamete inherits a complete haploid complement of alleles on chromosomes that are independently selected from each pair of chromatids lined up on the metaphase plate. Without recombination, all alleles for those genes linked together on the same chromosome would be inherited together.
Grey data points each represent a different DNA sequence position along the length of chromosome 2 as indicated on the x axis, with more positive values on the y-axis indicating earlier replication. A smoothed line (blue) is drawn through the data to visualize the domains of different replication timing.