Search results
Results from the WOW.Com Content Network
A cycle graph illustrates the various cycles of a group and is particularly useful in visualizing the structure of small finite groups. A cycle graph for a cyclic group is simply a circular graph, where the group order is equal to the number of nodes. A single generator defines the group as a directional path on the graph, and the inverse ...
In group theory, a subfield of abstract algebra, a cycle graph of a group is an undirected graph that illustrates the various cycles of that group, given a set of generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups .
The permutation matrices are arranged in a cycle graph of the cyclic group Z 4 like , but the identity is in the top left position, so that the symmetric matrices are mirrored at the diagonal. Cayley table of the cyclic group (The orange vectors are the same as in the cycle graph.) The four permutations in a matrix
In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...
This is the group obtained from the orthogonal group in dimension 2n + 1 by taking the kernel of the determinant and spinor norm maps. B 1 (q) also exists, but is the same as A 1 (q). B 2 (q) has a non-trivial graph automorphism when q is a power of 2. This group is obtained from the symplectic group in 2n dimensions by quotienting out the center.
Cycle graph (algebra), a diagram representing the cycles determined by taking powers of group elements; Circulant graph, a graph with cyclic symmetry; Cycle (graph theory), a nontrivial path in some graph from a node to itself; Cyclic graph, a graph containing at least one graph cycle; Cyclic group, a group generated by a single element; Cyclic ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Circulant graphs can be described in several equivalent ways: [2] The automorphism group of the graph includes a cyclic subgroup that acts transitively on the graph's vertices. In other words, the graph has an automorphism which is a cyclic permutation of its vertices. The graph has an adjacency matrix that is a circulant matrix.