Search results
Results from the WOW.Com Content Network
In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. [1] Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers , where the datatypes are ...
Another example is a similar singly linked type in Java: class List < E > { E value ; List < E > next ; } This indicates that non-empty list of type E contains a data member of type E, and a reference to another List object for the rest of the list (or a null reference to indicate that this is the end of the list).
For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [ 2 ]
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number.They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ.
An example of such a function is the function that returns 0 for all even integers, and 1 for all odd integers. In lambda calculus, from a computational point of view, applying a fixed-point combinator to an identity function or an idempotent function typically results in non-terminating computation. For example, we obtain ( .) = (.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A recursive acronym is an acronym that refers to itself, and appears most frequently in computer programming.The term was first used in print in 1979 in Douglas Hofstadter's book Gödel, Escher, Bach: An Eternal Golden Braid, in which Hofstadter invents the acronym GOD, meaning "GOD Over Djinn", to help explain infinite series, and describes it as a recursive acronym. [1]