Search results
Results from the WOW.Com Content Network
In geometry, a trapezoid (/ ˈ t r æ p ə z ɔɪ d /) in North American English, or trapezium (/ t r ə ˈ p iː z i ə m /) in British English, [1] [2] is a quadrilateral that has at least one pair of parallel sides. [3] The parallel sides are called the bases of the trapezoid. [4]
In classical mechanics and kinematics, Galileo's law of odd numbers states that the distance covered by a falling object in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time interval, it will cover 3, 5, 7, etc. times that distance ...
The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a, and BC = b, and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4 , and should not be confused with the mass moment of inertia .
If is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude and bases , , and . Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]