Search results
Results from the WOW.Com Content Network
Melting ice cubes illustrate the process of fusion. Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point.
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Trouton’s rule can be explained by using Boltzmann's definition of entropy to the relative change in free volume (that is, space available for movement) between the liquid and vapour phases. [ 2 ] [ 3 ] It is valid for many liquids; for instance, the entropy of vaporization of toluene is 87.30 J/(K·mol), that of benzene is 89.45 J/(K·mol ...
Mixture of polymers and solvent on a lattice. Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing.
Hess' law of constant heat summation (1840): The energy change accompanying any transformation is the same whether the process occurs in one step or many. [3] These statements preceded the first law of thermodynamics (1845) and helped in its formulation. Thermochemistry also involves the measurement of the latent heat of phase transitions.
Reptation is the thermal motion of very long linear, entangled basically macromolecules in polymer melts or concentrated polymer solutions. Derived from the word reptile , reptation suggests the movement of entangled polymer chains as being analogous to snakes slithering through one another. [ 14 ]
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.