Search results
Results from the WOW.Com Content Network
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]
This is a list of limits for common functions such as elementary functions. In this article, the terms a, ... if n is a positive integer [1] [2] [3]
Limit of a function. One-sided limit: either of the two limits of functions of a real variable x, as x approaches a point from above or below; List of limits: list of limits for common functions; Squeeze theorem: finds a limit of a function via comparison with two other functions; Limit superior and limit inferior; Modes of convergence. An ...
In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every ...
Euler ascertained that 2 31 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, consequently, the last of the above perfect numbers [i.e., 2 30 (2 31 − 1)], which depends upon this, is the greatest perfect number known at present, and probably the greatest that ever will be discovered; for as they ...
Greatest element and least element – Element ≥ (or ≤) each other element; Maximal and minimal elements – Element that is not ≤ (or ≥) any other element; Limit superior and limit inferior – Bounds of a sequence (infimum limit)
In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.
In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when ...