enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/ShockleyQueisser_limit

    The Shockley–Queisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."

  3. Third-generation photovoltaic cell - Wikipedia

    en.wikipedia.org/wiki/Third-generation...

    Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation").

  4. File:ShockleyQueisserBreakdown2.svg - Wikipedia

    en.wikipedia.org/wiki/File:ShockleyQueisser...

    English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell (black), and the inevitable losses that limit it (other colors). The black height is energy that can be extracted as useful electrical power; the pink height is energy of below-bandgap photons; the green height is energy lost when hot photogenerated electrons and holes relax to the band edges; the blue ...

  5. Hans-Joachim Queisser - Wikipedia

    en.wikipedia.org/wiki/Hans-Joachim_Queisser

    Hans-Joachim Queisser (born 6 July 1931, Berlin, Germany) is a solid-state physicist. He is best known for co-authoring the 1961 work on solar cells that detailed what is today known as the Shockley–Queisser limit , now considered the key contribution in this field.

  6. File:ShockleyQueisserZoomedIn.svg - Wikipedia

    en.wikipedia.org/wiki/File:ShockleyQueisser...

    English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)

  7. File:ShockleyQueisserFullCurve.svg - Wikipedia

    en.wikipedia.org/wiki/File:ShockleyQueisserFull...

    English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)

  8. Shockley diode equation - Wikipedia

    en.wikipedia.org/wiki/Shockley_diode_equation

    The Shockley equation doesn't model noise (such as Johnson–Nyquist noise from the internal resistance, or shot noise). The Shockley equation is a constant current (steady state) relationship, and thus doesn't account for the diode's transient response , which includes the influence of its internal junction and diffusion capacitance and ...

  9. Perovskite solar cell - Wikipedia

    en.wikipedia.org/wiki/Perovskite_solar_cell

    The Shockley–Queisser limit radiative efficiency limit, also known as the detailed balance limit, [105] [106] is about 31% under an AM1.5G solar spectrum at 1000 W/m 2, for a Perovskite bandgap of 1.55 eV. [107] This is slightly smaller than the radiative limit of gallium arsenide of bandgap 1.42 eV which can reach a radiative efficiency of 33%.