enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycosidic bond - Wikipedia

    en.wikipedia.org/wiki/Glycosidic_bond

    Glycosidic bonds of the form discussed above are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides ), where the oxygen of the glycosidic bond is replaced with a sulfur atom.

  3. Glycolipid - Wikipedia

    en.wikipedia.org/wiki/Glycolipid

    Glycolipid. Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. [1] Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. [2]

  4. Glycosynthase - Wikipedia

    en.wikipedia.org/wiki/Glycosynthase

    Glycosynthase are derived from glycosidase enzymes, which catalyze the hydrolysis of glycosidic bonds. [2] They were traditionally formed from retaining glycosidase by mutating the active site nucleophilic amino acid (usually an aspartate or glutamate ) to a small non-nucleophilic amino acid (usually alanine or glycine ).

  5. Amylopectin - Wikipedia

    en.wikipedia.org/wiki/Amylopectin

    Glucose units are linked in a linear way with α(1→4) Glycosidic bonds. Branching usually occurs at intervals of 25 residues. Branching usually occurs at intervals of 25 residues. At the places of origin of a side chain, the branching that takes place bears an α(1→6) glycosidic bond, resulting in a soluble molecule that can be quickly ...

  6. Amylase - Wikipedia

    en.wikipedia.org/wiki/Amylase

    Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. They belong to glycoside hydrolase family 14.

  7. Amylose - Wikipedia

    en.wikipedia.org/wiki/Amylose

    Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]

  8. Glycoside - Wikipedia

    en.wikipedia.org/wiki/Glycoside

    There are also numerous enzymes that can form and break glycosidic bonds. The most important cleavage enzymes are the glycoside hydrolases, and the most important synthetic enzymes in nature are glycosyltransferases. Genetically altered enzymes termed glycosynthases have been developed that can form glycosidic bonds in excellent yield ...

  9. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Cytosine, thymine, and uracil are pyrimidines, hence the glycosidic bonds form between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar. [2]