Search results
Results from the WOW.Com Content Network
The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [23]: 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium.
The case of any number of forces acting on the same object is covered by considering the sum of all forces. A possible cause of this problem is that the third law is often stated in an abbreviated form: For every action there is an equal and opposite reaction, [8] without the details, namely that these forces act on two different objects ...
The systematic treatment of the dynamic behavior of interconnected bodies has led to a large number of important multibody formalisms in the field of mechanics. The simplest bodies or elements of a multibody system were treated by Newton (free particle) and Euler (rigid body). Euler introduced reaction forces between bodies.
In a two-body rotation, such as a planet and moon rotating about their common center of mass or barycentre, the forces on both bodies are centripetal. In that case, the reaction to the centripetal force of the planet on the moon is the centripetal force of the moon on the planet. [6]
The compression and expansion phases of a collision between two solid bodies. Two rigid bodies in unconstrained motion, potentially under the action of forces, may be modelled by solving their equations of motion using numerical integration techniques. On collision, the kinetic properties of two such bodies seem to undergo an instantaneous ...
For example, if two forces of equal magnitude act upon a rigid body along the same line of action but in opposite directions, they cancel and have no net effect. But if, instead, their lines of action are not identical, but merely parallel , then their effect is to create a moment on the body, which tends to rotate it.
A force field is used to minimize the bond stretching energy of this ethane molecule.. Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields.
An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions.