Search results
Results from the WOW.Com Content Network
Secondly, he found the charge-to-mass ratio of alpha particles to be half that of the hydrogen ion. Rutherford proposed three explanations: 1) an alpha particle is a hydrogen molecule (H 2) with a charge of 1 e; 2) an alpha particle is an atom of helium with a charge of 2 e; 3) an alpha particle is half a helium atom with a charge of 1 e.
As such, the fine-structure constant is chiefly a quantity determining (or determined by) the elementary charge: e = √ 4πα ≈ 0.302 822 12 in terms of such a natural unit of charge. In the system of atomic units , which sets e = m e = ħ = 4 πε 0 = 1 , the expression for the fine-structure constant becomes α = 1 c . {\displaystyle ...
A replica of an apparatus used by Geiger and Marsden to measure alpha particle scattering in a 1913 experiment. The Rutherford scattering experiments were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated.
The magnitude of this charge is proportional to (up to a charge number that can be approximately half of) the atom's atomic mass—the remaining mass is now known to be mostly attributed to neutrons. This concentrated central mass and charge is responsible for deflecting both alpha and beta particles.
The X++ particle was later determined to have mass 4 and to be just a low-energy alpha particle. [8]: 25 Nevertheless, Rutherford had conjectured the existence of the deuteron, a +1 charge particle of mass 2, and the neutron, a neutral particle of mass 1. [32]: 396 The former is the nucleus of deuterium, discovered in 1931 by Harold Urey. [34]
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
It has a charge of +2 e and a mass of 4 Da. For example, uranium-238 decays to form thorium-234. While alpha particles have a charge +2 e, this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms.
Another possibility to consider is that the neutrino satisfies the Majorana equation, which at first seems possible due to its zero electric charge. In this case a new Majorana mass term is added to the Yukawa sector: = (¯ + ¯) where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right ...