Search results
Results from the WOW.Com Content Network
MRI scans showing hyperintensities. A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
The term "leukoaraiosis" was coined in 1986 [6] [7] by Hachinski, Potter, and Merskey as a descriptive term for rarefaction ("araiosis") of the white matter, showing up as decreased density on CT and increased signal intensity on T2/FLAIR sequences (white matter hyperintensities) performed as part of MRI brain scans. These white matter changes ...
The white cerebellum sign, also known as reversal sign or dense cerebellum sign, is a radiological sign denoting the relatively white appearance of the cerebellum due to a generalized decrease in density of the supratentorial brain structures caused by extensive edema.
Magnetic resonance imaging (MRI) [44] [45] Computed tomography (CT scan) [ 46 ] [ 47 ] [ 48 ] Transcranial Doppler ultrasonography (TCD), which measures cerebral blood flow velocity (CBFV) in the large intracranial arteries in the brain, has been shown in various studies to be an effective tool to diagnose children with sickle cell anemia at ...
Diffusion imaging is an MRI method that produces in vivo magnetic resonance images of biological tissues sensitized with the local characteristics of molecular diffusion, generally water (but other moieties can also be investigated using MR spectroscopic approaches). [15] MRI can be made sensitive to the motion of molecules.
[1] [4] Non-resolution of MRI abnormalities has been linked with poorer outcomes. [4] The presence of brain hemorrhage and cytotoxic edema (brain edema with concomittant brain tissue damage) is also associated with a poor prognosis. [2] If PRES was caused by pre-eclampsia or eclampsia the prognosis is better than in PRES due to other causes. [1 ...
The first MR images of a human brain were obtained in 1978 by two groups of researchers at EMI Laboratories led by Ian Robert Young and Hugh Clow. [1] In 1986, Charles L. Dumoulin and Howard R. Hart at General Electric developed MR angiography, [2] and Denis Le Bihan obtained the first images and later patented diffusion MRI. [3]
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...