Search results
Results from the WOW.Com Content Network
For sufficiently large values of λ, (say λ >1000), the normal distribution with mean λ and variance λ (standard deviation ) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate continuity correction is performed, i.e., if P( X ≤ x ...
Downloadable EXCEL program for the determination of the Most Probable Numbers (MPN), their standard deviations, confidence bounds and rarity values according to Jarvis, B., Wilrich, C., and P.-T. Wilrich: Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values.
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.
The relevance of the index of dispersion is that it has a value of 1 when the probability distribution of the number of occurrences in an interval is a Poisson distribution. Thus the measure can be used to assess whether observed data can be modeled using a Poisson process. When the coefficient of dispersion is less than 1, a dataset is said to ...
For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...
Assume is discrete random variable taking values on the non-negative integers, which is independent of the , and consider the probability generating function . If the X i {\displaystyle X_{i}} are not only independent but also identically distributed with common probability generating function G X = G X i {\displaystyle G_{X}=G_{X_{i}}} , then
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...