enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Greatest common divisors can be computed by determining the prime factorizations of the two numbers and comparing factors. For example, to compute gcd(48, 180) , we find the prime factorizations 48 = 2 4 · 3 1 and 180 = 2 2 · 3 2 · 5 1 ; the GCD is then 2 min(4,2) · 3 min(1,2) · 5 min(0,1) = 2 2 · 3 1 · 5 0 = 12 The corresponding LCM is ...

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  5. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

  7. 40 (number) - Wikipedia

    en.wikipedia.org/wiki/40_(number)

    40 is an abundant number.. Swiss mathematician Leonhard Euler noted 40 prime numbers generated by the quadratic polynomial + +, with values =,,,...,.These forty prime numbers are the same prime numbers that are generated using the polynomial + with values of from 1 through 40, and are also known in this context as Euler's "lucky" numbers.

  8. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  9. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).