enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to the vacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for all ...

  3. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Einstein's equations can also be solved on a computer using sophisticated numerical methods. [1] [2] [3] Given sufficient computer power, such solutions can be more accurate than post-Newtonian solutions. However, such calculations are demanding because the equations must generally be solved in a four-dimensional space.

  4. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]

  5. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  6. Frobenius solution to the hypergeometric equation - Wikipedia

    en.wikipedia.org/wiki/Frobenius_solution_to_the...

    Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.

  7. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  8. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.

  9. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.