enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Channichthyidae - Wikipedia

    en.wikipedia.org/wiki/Channichthyidae

    The fish can live without hemoglobin via low metabolic rates and the high solubility of oxygen in water at the low temperatures of their environment (the solubility of a gas tends to increase as temperature decreases). [2] However, the oxygen-carrying capacity of icefish blood is less than 10% that of their relatives with hemoglobin. [16]

  3. Aquatic respiration - Wikipedia

    en.wikipedia.org/wiki/Aquatic_respiration

    Gills are tissues which consist of threadlike structures called filaments. These filaments have many functions and are involved in ion and water transfer as well as oxygen, carbon dioxide, acid and ammonia exchange. [4] Each filament contains a capillary network that provides a large surface area for the exchange of gases and ions. Fish ...

  4. Fish gill - Wikipedia

    en.wikipedia.org/wiki/Fish_gill

    Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including ...

  5. Fish physiology - Wikipedia

    en.wikipedia.org/wiki/Fish_physiology

    Most fish exchange gases using gills on either side of the pharynx (throat). Gills are tissues which consist of threadlike structures called filaments.These filaments have many functions and "are involved in ion and water transfer as well as oxygen, carbon dioxide, acid and ammonia exchange.

  6. Lamella (surface anatomy) - Wikipedia

    en.wikipedia.org/wiki/Lamella_(surface_anatomy)

    In fish, gill lamellae are used to increase the surface area in contact with the environment to maximize gas exchange (both to attain oxygen and to expel carbon dioxide) between the water and the blood. [3] In fish gills, there are two types of lamellae, primary and secondary. The primary gill lamellae (also called gill filament) extends from ...

  7. Gill - Wikipedia

    en.wikipedia.org/wiki/Gill

    The blood carries oxygen to other parts of the body. Carbon dioxide passes from the blood through the thin gill tissue into the water. Gills or gill-like organs, located in different parts of the body, are found in various groups of aquatic animals, including mollusks, crustaceans, insects, fish, and amphibians.

  8. Fish - Wikipedia

    en.wikipedia.org/wiki/Fish

    Fish exchange gases using gills on either side of the pharynx. Gills consist of comblike structures called filaments. Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide. Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills.

  9. Aquatic animal - Wikipedia

    en.wikipedia.org/wiki/Aquatic_animal

    Aquatic animals generally conduct gas exchange in water by extracting dissolved oxygen via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are evolved from terrestrial ancestors that re-adapted to aquatic environments (e.g. marine reptiles and marine mammals), in which case they actually ...