Search results
Results from the WOW.Com Content Network
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The bias is a fixed, constant value; random variation is just that – random, unpredictable. Random variations are not predictable but they do tend to follow some rules, and those rules are usually summarized by a mathematical construct called a probability density function (PDF). This function, in turn, has a few parameters that are very ...
An equivalent definition of entropy is the expected value of the self-information of a variable. [ 1 ] Two bits of entropy: In the case of two fair coin tosses, the information entropy in bits is the base-2 logarithm of the number of possible outcomes — with two coins there are four possible outcomes, and two bits of entropy.
Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, [1] Laplace, de Finetti, [2] Ramsey, Cox, Lindley, and many others.However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probability theory is required, because one may not always be able to provide ...
Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument.
The uncertainty effect, also known as direct risk aversion, is a phenomenon from economics and psychology which suggests that individuals may be prone to expressing such an extreme distaste for risk that they ascribe a lower value to a risky prospect (e.g., a lottery for which outcomes and their corresponding probabilities are known) than its worst possible realization.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.