Search results
Results from the WOW.Com Content Network
In order to estimate the mode of the underlying distribution, the usual practice is to discretize the data by assigning frequency values to intervals of equal distance, as for making a histogram, effectively replacing the values by the midpoints of the intervals they are assigned to. The mode is then the value where the histogram reaches its peak.
The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins). Thus, if we let n be the total number of observations and k be the total number of bins, the histogram data m i meet the following conditions:
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution). These appear as distinct peaks (local maxima) in the probability density function, as shown in Figures 1 and 2. Categorical, continuous, and discrete data can all form multimodal distributions.
the middle value that separates the higher half from the lower half of the data set. The median and the mode are the only measures of central tendency that can be used for ordinal data, in which values are ranked relative to each other but are not measured absolutely. Mode the most frequent value in the data set.
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value.
Comparison of mean, median and mode of two log-normal distributions with different skewness. The mode is the point of global maximum of the probability density function. In particular, by solving the equation () ′ =, we get that: