Search results
Results from the WOW.Com Content Network
A capacitive power supply usually has a rectifier and filter to generate a direct current from the reduced alternating voltage. Such a supply comprises a capacitor, C1 whose reactance limits the current flowing through the rectifier bridge D1. A resistor, R1, connected in series with it protects against voltage spikes during switching operations.
Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance.However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance; this resistance is defined as the equivalent series resistance (ESR) [1].
A capacitor input filter (in which the first component is a shunt capacitor) and choke input filter (which has a series choke as the first component) can both reduce ripple, but have opposing effects on voltage and current, and the choice between them depends on the characteristics of the load. Capacitor input filters have poor voltage ...
The capacitor C IN has no effect on the ideal circuit's analysis, but is required in actual regulator circuits to reduce the effects of parasitic inductance and internal resistance of the power supply. The boost/buck capabilities of the SEPIC are possible because of capacitor C1 and inductor L2.
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...
Series circuits were formerly used for lighting in electric multiple units trains. For example, if the supply voltage was 600 volts there might be eight 70-volt bulbs in series (total 560 volts) plus a resistor to drop the remaining 40 volts. Series circuits for train lighting were superseded, first by motor-generators, then by solid state devices.
Here, the capacitance of capacitor C1 is multiplied by the ratio of resistances: C = C1 * R1 / R2 at the Vi node. [1] More advanced capacitance multiplier. The synthesized capacitance also brings a series resistance approximately equal to R2, and a leakage current appears across the capacitance because of the input offsets of OP.