enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/RiemannSiegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.

  3. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.

  4. Riemann–Silberstein vector - Wikipedia

    en.wikipedia.org/wiki/Riemann–Silberstein_vector

    In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector [1] or Weber vector [2] [3] named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, (or sometimes ambiguously called the "electromagnetic field") is a complex vector that combines the electric field E and the magnetic field B.

  5. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  6. Functional equation (L-function) - Wikipedia

    en.wikipedia.org/wiki/Functional_equation_(L...

    Just the same shape of functional equation holds for the Dedekind zeta function of a number field K, with an appropriate gamma-factor that depends only on the embeddings of K (in algebraic terms, on the tensor product of K with the real field). There is a similar equation for the Dirichlet L-functions, but this time relating them in pairs: [1]

  7. Riemann–Siegel theta function - Wikipedia

    en.wikipedia.org/wiki/RiemannSiegel_theta...

    In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ⁡ ((+)) ⁡for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.

  8. Local zeta function - Wikipedia

    en.wikipedia.org/wiki/Local_zeta_function

    In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = ⁡ (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.

  9. List of things named after Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/List_of_things_named_after...

    Riemann–von Mangoldt formula; Riemann hypothesis. Generalized Riemann hypothesis; Grand Riemann hypothesis; Riemann hypothesis for curves over finite fields; Riemann theta function; Riemann Xi function; Riemann zeta function; Riemann–Siegel formula; Riemann–Siegel theta function