enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake ...

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a ).

  4. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    Graph of x 3 + 2x 2 − 7x + 4 with a simple root (multiplicity 1) at x=−4 and a root of multiplicity 2 at x=1. The graph crosses the x axis at the simple root. It is tangent to the x axis at the multiple root and does not cross it, since the multiplicity is even.

  6. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or ⁠ 20 / 5 ⁠ = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...

  7. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    But p is coprime to q and therefore to q n, so by Euclid's lemma p must divide the remaining factor a 0. On the other hand, shifting the a n term to the right side and factoring out q on the left side produces: q ( a n − 1 p n − 1 + a n − 2 q p n − 2 + ⋯ + a 0 q n − 1 ) = − a n p n . {\displaystyle q\left(a_{n-1}p^{n-1}+a_{n-2}qp ...

  8. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...

  9. Wheel theory - Wikipedia

    en.wikipedia.org/wiki/Wheel_theory

    In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring . The term wheel is inspired by the topological picture ⊙ {\displaystyle \odot } of the real projective line together with an extra point ⊥ ( bottom element ) such that ⊥ = 0 / 0 {\displaystyle \bot =0/0} .