Search results
Results from the WOW.Com Content Network
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...
In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]
Outer automorphism group: 1⋅f⋅1, where f = 2n + 1. Other names: Suz(2 2n+1), Sz(2 2n+1). Isomorphisms: 2 B 2 (2) is the Frobenius group of order 20. Remarks: Suzuki group are Zassenhaus groups acting on sets of size (2 2n+1) 2 + 1, and have 4-dimensional representations over the field with 2 2n+1 elements. They are the only non-cyclic ...
If S can be taken to have just one element, G is a cyclic group of finite order, an infinite cyclic group, or possibly a group {e} with just one element. Simple group. Simple groups are those groups having only e and themselves as normal subgroups. The name is misleading because a simple group can in fact be very complex.
The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/(bd). [2]The additive group of the dyadic rational numbers, the rational numbers of the form a/2 b, is also locally cyclic – any pair of dyadic rational numbers a/2 b and c/2 d is contained in the cyclic subgroup generated by 1/2 max ...
These groups (the groups of Lie type, together with the cyclic groups, alternating groups, and the five exceptional Mathieu groups) were believed to be a complete list, but after a lull of almost a century since the work of Mathieu, in 1964 the first Janko group was discovered, and the remaining 20 sporadic groups were discovered or conjectured ...
Now from the fact that in a group if ab = e then ba = e, it follows that any cyclic permutation of the components of an element of X again gives an element of X. Therefore one can define an action of the cyclic group C p of order p on X by cyclic permutations of components, in other words in which a chosen generator of C p sends