Search results
Results from the WOW.Com Content Network
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
The exponent of the group, that is, the least common multiple of the orders in the cyclic groups, is given by the Carmichael function (sequence A002322 in the OEIS). In other words, λ ( n ) {\displaystyle \lambda (n)} is the smallest number such that for each a coprime to n , a λ ( n ) ≡ 1 ( mod n ) {\displaystyle a^{\lambda (n)}\equiv 1 ...
In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]
Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R. As a simple example, the cyclic group of order n has the ...
In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...
Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z 2 × Z 2, generated by pairs of order-two elements. The lattice formed by these ten subgroups is shown in the illustration.
Cyclic compounds may or may not exhibit aromaticity; benzene is an example of an aromatic cyclic compound, while cyclohexane is non-aromatic. In organic chemistry, the term aromaticity is used to describe a cyclic (ring-shaped), planar (flat) molecule that exhibits unusual stability as compared to other geometric or connective arrangements of ...
The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/(bd). [2]The additive group of the dyadic rational numbers, the rational numbers of the form a/2 b, is also locally cyclic – any pair of dyadic rational numbers a/2 b and c/2 d is contained in the cyclic subgroup generated by 1/2 max ...