Search results
Results from the WOW.Com Content Network
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.
Alternatively, the shape's area could be compared to that of its bounding circle, [1] [2] its convex hull, [1] [3] or its minimum bounding box. [3] Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [1]
The circle is the shape with the largest area for a given length of perimeter (see Isoperimetric inequality). The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry , and it has rotational symmetry around the centre for every angle.
A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]
Roundness = Perimeter 2 / 4 π × Area . This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = 4 π × Area / Perimeter 2 , which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Given a circle, let u n be the perimeter of an inscribed regular n-gon, and let U n be the perimeter of a circumscribed regular n-gon. Then u n and U n are lower and upper bounds for the circumference of the circle that become sharper and sharper as n increases, and their average ( u n + U n )/2 is an especially good approximation to the ...