enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Comparison of programming languages (string functions)

    en.wikipedia.org/wiki/Comparison_of_programming...

    string 1 OP string 2 is available in the syntax, but means comparison of the pointers pointing to the strings, not of the string contents. Use the Compare (integer result) function. C, Java: string 1.METHOD(string 2) where METHOD is any of eq, ne, gt, lt, ge, le: Rust [10]

  5. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  6. SequenceL - Wikipedia

    en.wikipedia.org/wiki/SequenceL

    A good example that demonstrates the above concepts would be in finding prime numbers. A prime number is defined as An integer greater than 1, with no positive divisors other than itself and 1. So a positive integer z is prime if no numbers from 2 through z-1, inclusive, divide evenly. SequenceL allows this problem to be programmed by literally ...

  7. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  8. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Let {q 1, q 2, …} be successive prime numbers in the interval (B 1, B 2] and d n = q n − q n1 the difference between consecutive prime numbers. Since typically B 1 > 2, d n are even numbers. The distribution of prime numbers is such that the d n will all be relatively small. It is suggested that d n ≤ ln 2 B 2. Hence, the values of H 2 ...

  9. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...