Search results
Results from the WOW.Com Content Network
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).
those of order pq n where q n divides 2 8, 3 6, 5 5 or 7 4 and p is an arbitrary prime which differs from q; those whose orders factorise into at most 3 primes (not necessarily distinct). It contains explicit descriptions of the available groups in computer readable format.
10, 9, 8, 7, 6, 5, 4, 3, 2, 1 is the fourth studio album by Midnight Oil, released in 1982 by Columbia Records. It hit number 3 on the Australian Kent Music Report Albums Chart during 171 total weeks. [1] The band's first US release, it peaked at number 178 on the Billboard 200. At the Countdown Music Awards, it was nominated for Best ...
(The first 5 perfect numbers end with digits 6, 8, 6, 8, 6; but the sixth also ends in 6.) Philo of Alexandria in his first-century book "On the creation" mentions perfect numbers, claiming that the world was created in 6 days and the moon orbits in 28 days because 6 and 28 are perfect.
8 5 (Take the last digit of the number, and check if it is 0 or 5) 8 5 (If it is 5, take the remaining digits, discarding the last) 8 × 2 = 16 (Multiply the result by 2) 16 + 1 = 17 (Add 1 to the result) 85 ÷ 5 = 17 (The result is the same as the original number divided by 5)
6.5 × 10 −4966 is approximately equal to the smallest non-zero value that can be represented by a quadruple-precision IEEE floating-point value. 3.6 × 10 −4951 is approximately equal to the smallest non-zero value that can be represented by an 80-bit x86 double-extended IEEE floating-point value.
In particular, the two rules below produce only even amicable pairs, so they are of no interest for the open problem of finding amicable pairs coprime to 210 = 2·3·5·7, while over 1000 pairs coprime to 30 = 2·3·5 are known [García, Pedersen & te Riele (2003), Sándor & Crstici (2004)].