Search results
Results from the WOW.Com Content Network
For external memory algorithms the external memory model by Aggarwal and Vitter [1] is used for analysis. A machine is specified by three parameters: M, B and D.M is the size of the internal memory, B is the block size of a disk and D is the number of parallel disks.
Any vertex that is not on a directed cycle forms a strongly connected component all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex of an acyclic graph. The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on ...
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The only additional data structure needed by the algorithm is an ordered list L of graph vertices, that will grow to contain each vertex once. If strong components are to be represented by appointing a separate root vertex for each component, and assigning to each vertex the root vertex of its component, then Kosaraju's algorithm can be stated ...
In the CSR, all adjacencies of a vertex is sorted and compactly stored in a contiguous chunk of memory, with adjacency of vertex i+1 next to the adjacency of i. In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes.
Let Y 1 be a minimum spanning tree of graph P. If Y 1 =Y then Y is a minimum spanning tree. Otherwise, let e be the first edge added during the construction of tree Y that is not in tree Y 1, and V be the set of vertices connected by the edges added before edge e. Then one endpoint of edge e is in set V and the other is not.
It is possible to find the maximum clique, or the clique number, of an arbitrary n-vertex graph in time O (3 n/3) = O (1.4422 n) by using one of the algorithms described above to list all maximal cliques in the graph and returning the largest one. However, for this variant of the clique problem better worst-case time bounds are possible.